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Abstract

Graph clustering and pooling operators have been adopted in graph-based architectures to
capture meaningful patterns in time series data by leveraging both temporal and relational
structures. However, the contribution of each design choice and the behavior of different
operators remain underexplored. This work introduces a streamlined deep learning frame-
work based on a spatio-temporal graph neural network (STGNN) for clustering time series,
which can leverage prior knowledge on the spatial structure of the data. The STGNN-
based model flexibly identifies clusters in various data settings through an encoder-decoder
architecture with a bottleneck, showing that a spatio-temporal approach can identify mean-
ingful clusters even in datasets that do not explicitly include spatial relations. We validate
the framework’s qualitative performance through experiments on synthetic and real-world
data, showing its effectiveness in different scenarios. We also provide a heuristic for model
selection in unsupervised settings via a self-supervised forecasting loss. Code available at
https://anonymous.4open.science/r/Time-Series-Clustering-with-GNNs-AB11

1 Introduction

In recent years, graph-based time series processing architectures have emerged as powerful tools for handling
multivariate time series by modeling with a graph the (spatial) relationships between different sequences (Jin
et al., 2024; Cini et al., 2023a). Such relationships can either be given as part of the data or derived from
temporal characteristics of the time series (Kipf et al., 2018; Cini et al., 2023c). Clustering and graph
pooling have been employed both as preprocessing techniques and as integral components of graph-based
architectures to enhance performance in tasks such as forecasting (Cini et al., 2020; 2024) and missing data
imputation (Marisca et al., 2024). These methods capture dependencies among time series, enabling the
learning of representations that account for multiple scales and dynamics at different resolutions. Despite the
effectiveness of clustering and graph pooling components, previous work mainly focused on the performance
of downstream tasks and put less emphasis on analyzing the generated clustering partitions. In this sense, a
focused study about the capability of graph deep learning models to learn meaningful clusters by integrating
both spatial and temporal information is still lacking.

To fill this gap, we analyze a streamlined graph-based model for clustering time series with sparse spatial
relations represented by a graph. This model is implemented as a spatio-temporal graph neural network
(STGNN) with an encoder-decoder architecture. The STGNN incorporates temporal processing units (Jin
et al., 2024), message passing (MP) layers (Battaglia et al., 2018), and a graph clustering (pooling) mod-
ule (Grattarola et al., 2022). The latter creates a bottleneck positioned between the encoder and the decoder
of the STGNN and learns end-to-end a clustering partition of the time series collection. The pooled repre-
sentation is then mapped back into the original graph. The full model is trained end-to-end to perform time
series forecasting as a (self-supervised) pretext task.

Given the unsupervised nature of the clustering problem, the standard cross-validation procedures cannot
be followed to select the optimal hyperparameters of the STGNN model. However, we show that, with the
proposed encoder-decoder architecture, the forecasting accuracy correlates well with the quality of the ex-
tracted clusters. This observation allows for adopting a model selection strategy based on the self-supervised
forecasting loss, thus avoiding reliance on supervised information.
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To evaluate the effectiveness and limitations of the STGNN model in clustering time series, we perform two
types of experiments. The first consists of clustering a set of synthetic data, where both spatial structure and
temporal dependencies need to be accounted for to cluster time series correctly. The second is a qualitative
analysis of the clusters obtained on a real-world dataset of time series where the spatial structure is not
available as a prior. In the latter case, we show that, even when an explicit graph structure describing the
relationships across the time series is not provided, an STGNN can be used to obtain meaningful clusters if
the underlying graph is built based on the similarities of the time series.

We summarize our main contributions below.

o We systematically analyze the clustering performance of a reference STGNN model in different
settings, both from a quantitative and a qualitative perspective.

e We show that, within our framework, forecasting loss can be used to perform model selection in a
completely unsupervised fashion.

e We show that STGNNs can be used to learn meaningful clusters from collections of time series, even
when spatial relationships are not given pre-defined.

The paper is structured as follows. Section 2 introduces the background and the problem definition. Sec-
tion 3 describes the deep learning framework used to perform clustering, along with its training and model
selection. In Section 4 we discuss the related work. Section 5 describes the synthetic and real-world datasets.
In Section 6, we analyze the performance and the clustering results obtained with the proposed STGNN
framework compared to traditional approaches for time series and graph node clustering. Finally, we draw
our conclusions in Section 7.

2 Preliminaries

2.1 Problem definition

Consider a group of N multivariate time series with C' > 1 variables. We define the observations at time ¢ as
X; € RV*Y Furthermore, a sequence of observations from time ¢ to ¢ + 7 is denoted as X.; 47 € RT*NXC,
Analogously, we use i € R® to denote observations w.r.t. the i-th time series at time step ¢. Time series are
assumed to be homogenous, i.e., to have the same C' channels referring to the same variables. The time series
can be associated with M covariates that, at time ¢ are described by a matrix U; € RV*M | We assume that
each time series is generated by a time-invariant stochastic process and the presence of Granger causality
among them (Granger, 1969).

Time series clustering The goal of time series clustering is to group time series that exhibit similar
temporal patterns. Standard approaches typically rely on similarity scores among time series or representa-
tions thereof. Clustering assignments can be described by a (soft) assignment matrix S € RV *¥X where K
denotes the number of clusters, the entry s; ; is the membership of time series ¢ to cluster j, and > y S; ;=1
Hard assignments are obtained by taking the row-wise argmax of S. The quality of a clustering partition is
generally measured in terms of the compactness and separation of the clusters (Maulik & Bandyopadhyay,
2002). Information-theoretic measures can be used to quantify how much the elements in a cluster are similar
to each other and different from those of other clusters (Gokcay & Principe, 2002). Finally, when supervised
information is available, the performance can be measured as the agreement between the class and the cluster
labels (Rand, 1971). For example, commonly used metrics include Normalized Mutual Information (NMI),
Homogeneity Score (HS), and Completeness Score (CS). The NMI measures the mutual dependence between
the ground-truth labels and the cluster assignments, normalized by their entropy. Formally, it is defined as:

21(Y;C)

A (Y Ie)

(1)

where Y denotes the true labels, C the predicted cluster labels, I(Y; C) is the mutual information between
Y and C, and H (-) represents the entropy. The HS evaluates whether each cluster contains only data points
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that belong to a single class. It is given by:
_HI|C)

HS =1 ) (2)

where H(Y'|C) is the conditional entropy of the class labels given the cluster assignments. The CS assesses
whether all data points belonging to the same class are grouped into the same cluster, and is defined as:
H(ClY)
CS=1— ———F7+1—7, 3
H(O) (3)
where H(C|Y) is the conditional entropy of the cluster assignments given the true labels. All these metrics
take values in the interval [0, 1], where a value of 1 indicates perfect clustering performance.

Relational priors In many real-world scenarios, time series are not independent but show a rich de-
pendency structure, e.g., in sensor networks, traffic data, or biological signals. Specifically, we assume the
presence of Granger predictive causality (Granger, 1969) among time series, i.e., we assume that observa-
tions at related time series can be used to make more accurate predictions. Further, we assume dependencies
among time series to be sparse and encode them in an adjacency matrix A € RV>*¥_ The entries of A can
be binary or real, in which case a weight is associated with each edge. These dependencies, represented as a
graph, can be used to inform the clustering process, e.g., as a regularization. Note we use the term spatial
in a broad sense, to refer to the dimension spanning the time series collection. In this regard, the adjacency
matrix is used to encode functional dependencies and sparsity priors on the dependency structure.

2.2 Graph Neural Networks with Pooling

This section introduces the reference graph neural network (GNN) operators used in Section 3 as components
of the proposed framework. Hierarchical GNN architectures are usually built by alternating message passing
(MP) layers, which use structural relations to update the node representations, with graph pooling layers,
which gradually reduce the size of the graph and the node representations (Grattarola et al., 2022).

Graph convolutional operators As MP layer, we use as reference a simple graph convolutional operator
with a parametrized skip connection (Bianchi et al., 2021). Let H € R™*¥ be the matrix of the node
features associated with the nodes in the graph. Given adjacency matrix A, the Graph Conv Skip (GCS)
convolutional operator is defined as:

H' =o(D 'Y?AD '?HO\p + HOg¢ + b), (4)

where D = diag(A1l), and Oyp € RFXF/, Ogc € RE*XF" and b € RF' are learnable parameters.

Graph pooling Several families of hierarchical graph pooling operators exist, which differ in how they
compute the topology and features of a coarsened graph (Grattarola et al., 2022; Liu et al., 2023a). In
this work, we focus on pooling operators that cluster the nodes of the original graph and let the nodes of
the pooled graph be the representatives of each cluster. In particular, the graph pooling operator learns a
soft assignment matrix § € RY*X which maps each node of the original graph into one or more of the K
supernodes of the pooled graph. The assignment matrix S is typically obtained by passing node features
learned by one or more MP layers into a learnable function such as a multilayer perceptron (MLP). The
structure of S is influenced by the graph topology, the node features, the loss of the downstream task,
and a set of auxiliary losses that encourage the formation of well-behaved clusters (Grattarola et al., 2022).
The clustering-based pooling operators we consider compute the adjacency matrix and node features of the
pooled graph as:

Hyo=S"H, A,.=S"AS. (5)
We also consider a lifting (or unpooling) operation used to map the pooled nodes back to the original node
space:

Hyp = Sf(Hpool), (6)

where f(-) represents processing (e.g., the application of one or more MP layers) between the pooling and
unpooling operations.
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Graph clustering regularizations One of the main differences between the existing clustering-based
graph pooling methods such as MinCutPool (Bianchi et al., 2020a), DiffPool (Ying et al., 2018), DMoN (Tsit-
sulin et al., 2020), and TVGNN (Hansen & Bianchi, 2023) is in how they regularize the learning of the cluster
assignment matrix S; usually, this happens through the use of an auxiliary clustering loss. The mathematical
formulation of the different losses is deferred to Appendix A.

While different methods exist, the loss usually consists of two components (Bianchi, 2022):
Eaux = Etopo + Equality- (7)

The first component, Liopo, ensures that the cluster assignments are consistent with the graph topology,
while Lguality encourages clusters to be balanced and well-formed. These auxiliary losses are generally
inspired by graph-theoretical properties and are typically formulated based on the static structure of the
graph. However, when graph nodes represent time series, it is not immediately clear whether and how
strongly these regularizations impact the formation of meaningful temporal clusters. The impact of these
regularizations may vary depending on how accurately the adjacency matrix A captures relationships relevant
to the clustering task. In this study, we explore whether such regularization contributes meaningfully to
the clustering process and investigate under which conditions incorporating these losses provides practical
advantages.

2.3 Spatio-temporal Graph Neural Networks

STGNNSs integrate GNNs and temporal processing units to capture dependencies across both spatial and
temporal dimensions. The core component of an STGNN is a spatio-temporal MP operator (Cini et al.,
2023a; Marisca et al., 2024). Let hz<lt be the sequence of representations up to ¢ of ¢-th node at the I-th layer.
Following Cini et al. (2023a), a generic spatio-temporal MP operator updates representations at each layer
as:

il il il g gl
ht +1 _ ,.Yl <hgt’JA€Cj}v(%11:){¢l (hgt,hét,aﬁ)) s (8)

where aj; is entry (i,j) of A, N (i) is the neighborhood of the i-th node, AGGR is a differentiable and
permutation-invariant aggregation function (e.g., sum or mean), and 7', ¢' are differentiable update and
message functions, respectively.

STGNN architectures generally follow two main paradigms depending on the order in which temporal and
spatial information are processed (Gao & Ribeiro, 2022; Cini et al., 2023a). The time-then-space (TTS)
paradigm first encodes temporal information and subsequently processes the resulting node embeddings
spatially. This improves computational efficiency, as spatial propagation is performed only w.r.t. the last
time step, thus reducing computational overhead and memory consumption. Conversely, the time-and-space
(T&S) paradigm interleaves temporal and spatial propagation. While the T&S approach is more flexible, the
streamlined architecture of TTS models makes them a valid choice in many scenarios, e.g., when scalability
is a requirement.

3 Time series clustering with STGNNs

In the following, we present a reference architecture for time series clustering with STGNNs. In particular,
we propose a time series clustering pipeline where the input time series are first encoded in a static graph rep-
resentation, which is then pooled into a smaller graph where each node represents a cluster. Representations
corresponding to each node are mapped into predictions and then mapped back to the original nodes. In
this way, the predictions for each node depend only on their cluster membership. The architecture is trained
end-to-end to minimize forecasting errors at each node in a self-supervised fashion, clustering together time
series with similar dynamics. The training loss is optimized jointly with a graph clustering loss, which regu-
larizes the learned assignments based on the predefined relational structure. As a result, the graph structure
influences the learned model both through the loss function and the message-passing operators.

Section 3.1 introduces each processing block, while Section 3.2 discusses the training strategy, the loss
function, and model selection.
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Figure 1: Architectural diagram of the model.

3.1 Model architecture

We start by giving a general overview of the architecture of the STGNN model. Then, we detail the structure
of the encoder and decoder. A diagram of the whole architecture is shown in Figure 1.

3.1.1 Overview

The proposed architecture is an STGNN with a sequence-to-sequence encoder-decoder structure. The en-
coder block of the model follows a TTS paradigm, i.e., the temporal dimension is processed first and encoded
into a vector embedding for each node. The time embeddings are then processed by a GNN block consisting
of stacked MP layers followed by a pooling operator that results in a reduced set of K < N nodes. More
details are discussed in Section 3.1.2.

After pooling, the coarsened representation is processed by a decoder that first maps the representation at
each node into a different encoding for each target forecasting time step, reintroducing a temporal dimension.
We refer to the resulting K time series as latent factors (Wang et al., 2019b). Such latent factors can be
interpreted as a set of bases, each corresponding to one of the clusters that the model has learned. Since
the decoder generates predictions for all the original nodes through a lift operation from such latent factors,
their formation directly influences the performance of the downstream task. A detailed description of the
decoder is deferred to Section 3.1.3.

3.1.2 Encoder

Let Ty be the length of the temporal window of the input time series. At the beginning of the encoder, a
combination of two MLPs is used to combine the input time series X;_1,, .+ and covariates U;_1,, .+ as

ri = CondBlock(x}, u!) = MLP x (z!) + MLPy (uf), (9)
where 7! € R and H is the hidden size, i.e., the embedding dimension. If exogenous variables are absent,

MLPy; is not utilized.

Sequence encoder These initial representations are then processed by a sequence encoder (SeqEnc) which
embeds the temporal information of each node into a static vector:

hi’o = Squnc(riTW:t), (10)

where hi’o € R; we use HY € RV*H to denote the matrix obtained by stacking the node representations.
The sequence encoder can be implemented by any sequence modeling block, e.g., a temporal convolutional
network or recurrent neural network, which produces a vector encoding of the entire sequence.

In practice, as the temporal encoder, we use a stack of dilated temporal convolutional networks (TCNs) (Lea
et al., 2016) with increasing dilation factors, to capture at each layer different input dynamics. To obtain
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a vectorial representation, the Ty representations generated by the TCN layers are combined with an
attention-based aggregator.

Spatial message passing After the temporal information has been encoded, the spatial dependencies
captured by the graph topology are embedded into node representations through a GNN encoder consisting
of a stack of L MP layers:

H} = GNN(HY, A), (11)

where HF € RV*H and we use GNN( -, A) to indicate the stack of MP layers applied w.r.t. to A. While,
in principle, any MP operator can be considered, we use the graph convolution operator Eq. 4 in our
implementation.

Clustering step There is a strong connection between node clustering and the family of graph pooling
operators mentioned in Section 2.2, particularly those that optimize losses inspired by graph theoretical
objectives, such as graph cuts. Indeed, one can use the graph pooling framework to model the assignment
of nodes to supernodes, i.e., clusters. In practice, similarly to Cini et al. (2024), we rely on a static cluster
assignment matrix § € RY*X by parameterizing it directly with a table of learnable parameters ® € RYV* X,
By doing so, we ensure consistency in the cluster assignments across time steps. Note that this is different
from what is typically done in standard pooling operators, where the cluster assignment matrix is obtained
as a function of input node features (Grattarola et al., 2022).

To obtain normalized assignments, we apply a row-wise softmax to the unnormalized scores ®. The output
of the GNN encoder is then pooled to obtain a reduced node set with K nodes as:

Sk

Ot = ‘FS’VTHtL; §i,k) = )
Zfiil Si,k

(12)

where O, € REXH and § is the rescaled cluster assignment matrix. By scaling S before pooling, the
magnitude of the resulting node representations O; becomes independent of cluster sizes. This prevents the
magnitude of each representation from scaling with the number of nodes it is derived from. This mitigates
numerical instabilities for very small clusters and facilitates the formation of latent factors that better capture
average patterns in the clusters at time step ¢.

3.1.3 Decoder

The decoder first processes the pooled representations with an MLP that maps each node representation
into a sequence of length Thy:

Zyyiry = MLP1p(0y),  Z; € REXC, (13)

The time series Z;.¢47,, are the latent factors, which serve as cluster representatives and are instrumental
to the reconstruction of the input time series while encouraging meaningful clusters. As described in Eq. 6,
the soft assignments are used to lift the features of the pooled graph back to the input node space:

X, =8Z, T=t,... t+Ty. (14)

Here, Ty is the horizon of the time series forecasting used to train the model, and X\t:HTH are the final
predictions. By design, the latent factors Z;.ir, act as bases for the forecasts, which are obtained as
convex combinations as shown in Eq. 14. In the case of sharp cluster assignments, i.e., when the rows of the
cluster assignment matrix S are close to being one-hot vectors, each node is almost exclusively mapped to a
single cluster. In this scenario, the lift operation directly maps the corresponding latent factor to all nodes
in that cluster, which will more explicitly connect forecasting performance to the groupings made during
pooling. Conversely, if the cluster assignments are smooth, different latent factors are combined to build a
prediction. Therefore, enforcing sharpness in S can act as a further regularization. We propose a training
strategy that encourages each latent factor to serve as a distinctive (and representative) average predictor
for its corresponding cluster, thereby leading to the formation of more meaningful clusters.
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3.2 Training

The proposed model is trained in a self-supervised fashion to forecast the next T steps by minimizing a
mean absolute error (MAE) loss £,cq. The optimization procedure will also directly affect the parameters
in S and, thus, the formation of the clusters.

Graph-based regularization Crucial to the optimization procedure for GNNs with pooling layers is to
encourage the formation of informative clusters and to prevent degenerate solutions commonly found at the
beginning of training. Those typically include assigning all nodes to the same cluster or memberships being
near-uniform and uninformative. To this end, we consider auxiliary losses provided by the existing graph
pooling operators (Grattarola et al., 2022). These losses are used to modify the learnable parameters ® that
are used to compute soft assignments S. The balance of the forecasting loss and the auxiliary pooling losses
is key to capturing both spatial and temporal information, which, in turn, enables obtaining a meaningful
clustering result. To control this balance, the pooling losses are weighted with coefficients:

»Ctotal = Epred + C1»C7fopo + CQL:qualityv (15)

where Liopo and Lgyaiity are the two terms of the auxiliary loss from Eq. 7 associated with the pooling
method of choice. As discussed at the end of Section 3.1.3, our goal is to produce sharp assignments to
obtain latent factors that represent each cluster well. To this end, during training, we gradually lower the
temperature 7 in the softmax used to compute the soft cluster assignments S.

3.3 Model selection

As there are no universal optimal criteria for assessing clustering performance, measuring clustering quality
and performing model selection largely depend on prior assumptions about the relevant structures in the
data and priorities on the similarities that one wishes to model. For example, we might want to group time
series that exhibit similar dynamics or to identify patterns that appear more often in a certain class. Class
labels, however, are not available during training and validation in a completely unsupervised setting. This
implies that we cannot leverage metrics such as the NMI, HS, and CS to perform model selection, as these
metrics quantify the agreement between identified clusters and class labels.

In our architecture, predictions are obtained directly from the latent factors associated with each cluster. As
a result, forecasting accuracy will depend on how well each latent factor represents the dynamics of the time
series in the associated cluster. As shown in Section 6, our approach highlights a positive correlation between
cluster-class correspondence and forecast performance. Specifically, we show a significant correlation between
the forecasting loss and the clustering quality evaluated in terms of NMI and HS. Under the assumption
that clusters group time series with similar patterns and that those patterns characterize, to some extent,
the different classes, we can perform model selection by heuristically monitoring the forecasting loss Lyyeq
as a proxy of clustering quality.

4 Related Work

There is a vast literature on time series clustering methods based on standard statistical approaches (Liao,
2005; Izakian et al., 2015), machine learning methods (Aghabozorgi et al., 2015; Bianchi et al., 2020b), and
deep learning approaches (Ma et al., 2019). Similarly, node clustering is a well-known problem in graph
processing research (Schaeffer, 2007) that can be addressed with traditional techniques such as spectral
clustering (von Luxburg, 2007), traditional deep learning architectures (Wang et al., 2019a; Pan & Kang,
2021), and modern GNNs (Bianchi et al., 2020a; Tsitsulin et al., 2020; Bianchi, 2022). Methods to cluster
time series based on modeling spatio-temporal relationships have traditionally relied on density estimation
techniques that leverage various forms of kernel methods (Nakaya & Yano, 2010; Hu et al., 2018; Jiang et al.,
2012) and ST-DBSCAN (Birant & Kut, 2007; Gomide et al., 2011). A more recent example is the work of
Deb & Karmakar (2023), which proposed to adopt a convex combination of spatial and temporal distance
matrices. In this work, we mainly focus on spatio-temporal deep learning models for correlated time series.
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Graph clustering and pooling in spatio-temporal graph neural networks (STGNNs) Recent
advancements in spatio-temporal forecasting have leveraged GNNs to handle complex dependencies in spatial
and temporal data (Cini et al., 2023a). Similar to our proposed approach, spatio-temporal processing in
STGNNSs is typically done by alternating MP with temporal processing layers. Several works also leverage
clustering techniques to pre-group data points or enhance model performance (Caggiani et al., 2017; Cini
et al., 2020). However, the way clustering is applied in these works differs significantly from our proposed
graph pooling strategy. For example, Ji et al. (2023) proposes a framework for traffic flow prediction,
which leverages adaptive data augmentation and clustering-based self-supervised tasks to model spatial and
temporal heterogeneity to enhance the representation of traffic patterns. To enhance traffic flow forecasting
accuracy, Chen et al. (2022) leverages spatial-temporal clustering to group traffic nodes based on recent
and periodic traffic states, enabling the STGNN model to capture the spatio-temporal dependencies better.
Graph pooling has been increasingly adopted in STGNN architectures to learn richer representations, but
mostly focusing on improving the performance on downstream tasks rather than on the quality of the
clustering partition. Cini et al. (2024) and Ma et al. (2022) incorporate graph pooling operators, such as
MinCutPool (Bianchi et al., 2020a) and DiffPool (Ying et al., 2018), to create hierarchical representations of
time series data. Marisca et al. (2024) also extract a hierarchical representation but utilize a non-trainable k-
MIS pooling operator. Other works adopted more conventional pooling operators like global max pooling (Liu
et al., 2023b). To our knowledge, the closest related work to our framework is found in Brenner et al. (2023),
which presents a GNN model with an encoder-decoder structure employing graph pooling applied to Capacity
Expansion Problems. However, their model is trained to perform reconstruction rather than prediction. In
addition, they employ a temporal window in processing, whereas our approach integrates both spatial and
temporal dynamics more comprehensively. Also, while Brenner et al. (2023) puts some focus on clustering,
their work is still mainly performance-driven and does not perform a thorough analysis of the clustering
results. In addition, the cluster assignment matrix for graph pooling is computed directly from the output
of a block of GNN layers rather than being learned directly, and, thus, the cluster assignments will vary with
time rather than being static.

To summarize, all these works demonstrate the utility of graph pooling in learning multi-scale representations,
but limited focus is put on the quality and the interpretability of the clustering results and to what extent
the spatial and temporal information is accounted for in producing the groupings.

5 Dataset description

This section presents the datasets considered in our experimental evaluation.

5.1 Synthetic datasets

We have designed a series of synthetic datasets to assess the capability of the proposed STGNN architecture
to leverage both temporal and spatial dependencies to form clusters. Specifically, each dataset consists of a
graph with nodes associated with a time series and a class label. The class of a node is determined both by
its role in the graph and by the associated time series, in a proportion that varies across datasets. In other
words, in some datasets, the class of a node depends more on the graph topology, and in others it depends
more on the characteristics of the time series.

The graph of each dataset is constructed by connecting subgraphs obtained from the Barabési-Albert (BA)
model (Barabési & Albert, 1999; Barabdsi & Frangos, 2002). The nodes of each subgraph are associated with
one of the classes, and the subgraph is constructed using a unique choice of parameters in the BA model.
The full graph is obtained by connecting all the subgraphs through a few random edges.The BA model was
chosen because, compared to other models such as the stochastic block model, its edge sampling algorithm
offers a reasonable amount of flexibility to generate subgraphs that differ in both edge density and structure.
For example, one can obtain a range of topologies spanning from more sparsely connected tree-like structures
to more dense structures with heavily linked hub nodes. Each subgraph is also guaranteed to be connected
(no disjoint regions), meaning that only a few edges between the subgraphs are necessary to ensure that the
full graph is connected.
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The time series are generated using a Graph Polynomial Vector AutoRegressive (GPVAR) (Zambon & Alippi,
2022) system with local effects. The procedure is inspired by Cini et al. (2023b), with the difference that we
use sinusoids to model the local effects

L Q
Ht = Z Z @qylAlilXt_q, (16)

=1 g=1
X1 = tan(Hy) + asin(2nt/p + @) + 1, (17)

where ® € R?*L are the autoregressive coefficients, a,p, ¢ € RN denote the sine wave parameters, and
1t € N(0,02I) denote a vector of N random values generated from a Gaussian distribution centered at zero
with the variance o being a predefined parameter. To inject the class information within the structure of
the time series, all the time series associated with nodes of class k share the set of parameters ay, px, and
¢k. The intra-class differences arise from the Gaussian noise 7; and the structure of A, which combines each
node with different neighbors.

5.2 Smart meter dataset

Real-world collections of time series with node-level labels and associated relational information are rare,
which complicates computing quantitative evaluations of the partitions as performance metrics such as NMI
rely on supervised information. On the other hand, time series classification datasets are common and, even
if the graph topology is not part of the original inputs, an STGNN can still effectively perform time series
clustering. In this case, a suitable adjacency matrix must be derived from the data in such a way that reflects
meaningful relational information across the time series.

Specifically, to test the effectiveness of the proposed STGNN model to perform clustering in a real-world set-
ting, we consider the Commission for Energy Regulation (CER) dataset (Commission for Energy Regulation
(CER), 2012). This dataset contains time series of energy load consumption from over 5,000 Irish homes and
businesses, which were collected between 2009 and 2010. Each time series is associated with an electricity
customer labeled as “residential”, “SME” (small/medium enterprise), or “other”. Since the “other” class
primarily consists of unlabeled data from the other two categories, we focus only on clustering time series
from the “residential” and “SME” groups. Due to the large amount of missing values in the dataset, we
filter out customers with more than 5% missing load values. Additionally, to mitigate the imbalance between
“residential” and “SME”, we randomly sample 25% of the residential customers. These steps yield a final
dataset of 1,541 time series, with a 70/30 split between “residential” and “SME”.

Because no explicit relational dependencies are provided in the original data, we construct a graph based on
the level of association between the time series. In this instance, the prior spatial information that establishes
a dependency structure between the time series is based on the assumption that only series exhibiting a degree
of similarity should be considered as related. To build the graph, we first compute the similarities among
the time series and then apply a k-nearest neighbor (k = 3) approach to create a sparse connectivity matrix.
Then, we binarize and symmetrize the connectivity matrix, obtaining the final adjacency matrix A that
describes an undirected graph with all edges weighted equally. In Section 6.2, we perform an ablation study
to investigate the impact of taking different approaches for building the relational graph, and we evaluate
the overall impact of the spatial component of the STGNN. Additional details regarding the CER subset
and the constructed graphs are given in Appendix B.2.

6 Results and discussion

For each dataset, a hyperparameter selection was made through a grid sweep where only the pooling loss
coeflicients were searched, with candidate values consisting of 6 linearly spaced points spanning from 0.1 to
2.5. Furthermore, each configuration was run 3 times, and the configuration that achieved the lowest mean
validation mean absolute error (MAE) was selected for evaluation.
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(a) Balanced-U (b) Balanced-NU (c) OnlyGraph (d) OnlySeries

Figure 2: Visual representation of the graph of each synthetic dataset. The colors/shapes correspond to the
different underlying classes. Node positions were generated using the Fruchterman-Reingold force-directed
algorithm.

We split the datasets along the temporal dimension. We use the first 80% of the time series for training
and the next 10% for validation. The remaining 10% is kept aside for making qualitative plots. For those
baselines that did not require hyperparameter selection, we also used the validation set for training.

For the synthetic datasets, the window size Ty was set to 16, and for CER it was set to 72 (hours). For
both the synthetic and real-world dataset the proposed STGNN was set to do a one-step prediction, i.e.,
Ty = 1. Further details about model configuration and additional results are deferred to Appendix C.

6.1 Synthetic data clustering

Four different datasets were created following the procedure described in Section 5.1. Each dataset consists
of a graph with 1500 nodes divided into 5 classes, and there is a time series of 2000 time steps associated
with each node. Fig. 2 shows the graph topology and the class of the nodes in each dataset.

In the first two datasets, named Balanced-U and Balanced-NU, the parameters of the graph and the time
series were chosen such that the class information influences both the spatial and temporal components of
the datasets. The only difference between the two datasets is that in Balanced-U the cardinality of the
elements in each class is the same, while in Balanced-NU the class distribution is non-uniform. In the
datasets OnlyGraph and OnlySeries, the class information characterizes either the graph topology or the
time series, respectively, but not both. In the OnlySeries dataset, the underlying graph is a single Erdés-
Rényi graph (Erdos & Rényi, 1959) rather than being a composition of different subgraphs, one for each
class. On the other hand, in the OnlyGraph dataset, all series are generated from the same AR(2) model.
For OnlyGraph and OnlySeries, the class distribution is uniform. The details about the generations of the
different synthetic datasets are reported in Appendix B.1.

As baselines, we compare against methods that either utilize only the spatial or the temporal information.
We also consider as baselines architectures for static graphs where the node attributes are a set of temporal
and spectral features of the time series. As purely spatial methods, we consider Spectral Clustering (SC),
Walktrap (Pons & Latapy, 2005), and Leiden (Traag et al., 2019), which cluster the nodes by looking at the
graph topology. On the other hand, the chosen temporal methods apply spectral clustering to a similarity
matrix computed from the time series and disregard the original graph. As time series similarity measures,
we use the Euclidean similarity (obtained by taking the inverse of the distance scaled to [0,1]), the cosine
similarity, and the dynamic time warping (DTW) (Berndt & Clifford, 1994). We also consider the cosine
similarity between the vectorial embeddings obtained by processing the time series with an echo state network
(ESN), as described in Bianchi et al. (2020b).

As discussed in Section 4, there is a lack of STGNN-based approaches specifically designed for clustering time
series. To provide a comparison with methods that can consider both time series data and an underlying
graph structure, we extract a set of static features from the time series and apply methods for clustering graph
nodes that can account for the node attributes. We rely on the TSFEL (Barandas et al., 2020) package
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Table 1: Synthetic data experiment results. SC: Spectral clustering, DTW: Dynamic Time Warping, ESN:
Echo State Network. For each metric and dataset, the highest value is in bold, and the second highest
is underlined. The group Static feats refers to the methods processing graphs with static node features
extracted from the time series. Values are in percentages (average+standard deviation).

Method Dataset
Balanced-U Balanced-NU
NMI HS CS NMI HS CS
SC 47.7+0.0 40.2+0.0 58.6+0.0 58.5+0.0 52.6+0.0 65.9+0.0
Spatial Walktrap 61.7+0.0 88.0+0.0 47.6+0.0 60.9+0.0 87.7+0.0 46.6+0.0
Leiden T7.7T+0.0 91.8+0.0 67.4+0.0 62.8+0.0 86.0+0.0 49.4+0.0
Euclidean 92.3+0.0 92.1+0.0 92.3+0.0 87.2+0.0 88.8+0.0 85.6+0.0
Temporal Cosine 91.8+0.0 91.6+0.0 91.9+0.0 86.8+0.0 88.5+0.0 85.340.0
p DTW 67.0+0.1 63.9+0.1 70.2+0.1 66.4+0.4 65.2+0.2 67.7+0.5
ESN 86.3+1.5 82.4+0.7 90.6+2.5 81.2+1.2 77.840.9 84.8+1.7
GAE 94.1+6.2 92.0+8.7 96.4+3.3 93.445.1 91.547.2 95.443.2
Static feats VGAE 98.2+0.9 98.2+0.9 98.2+0.9 94.8+2.0 94.8+2.0 94.7+2.0
StaticPool 94.7+4.0 94.5+4.2 94.9+3.8 69.8+4.6 72.2+4.9 67.5+4.2
Proposed NoPoolLoss 74.2437.1 73.9437.0 94.642.9 83.6+1.3 85.0+1.5 82.2+1.2
p MinCutPool 100.0+0.0 100.0+to0.0 100.0+0.0 95.5+0.2 95.8+0.2 95.3+0.2
OnlySeries OnlyGraph
NMI HS CS NMI HS CS
SC 0.5+0.0 0.4+0.0 0.6+0.0 100.0+0.0 100.0+0.0 100.0+0.0
Spatial Walktrap 7.9+0.0 14.5+0.0 5.4+0.0 85.640.0 85.640.0 85.640.0
Leiden 0.8+0.0 1.1+0.0 0.7+0.0 99.7+0.0 99.7+0.0 99.7+0.0
Euclidean 100.0+0.0 100.0+0.0 100.0+o0.0 0.3+0.1 0.3+0.1 0.3+0.1
Temporal Cosine 100.0+0.0 100.0+0.0 100.0+o0.0 0.3+0.0 0.3+0.0 0.3+0.0
p DTW 99.5+0.0 99.5+0.0 99.5+0.0 0.240.0 0.2+0.0 0.2+0.0
ESN 99.4+0.6 99.4+0.6 99.4+0.6 0.3+0.1 0.3+0.1 0.3+0.1
GAE 8.7+2.3 8.3+2.2 9.1+2.3 21.5+9.8 20.149.2 23.1+10.4
Static feats VGAE 11.7+0.9 11.7+0.9 11.8+0.9 41.4+8.0 41.3+8.1 41.5+8.0
StaticPool 13.7+2.6 13.7+2.6 13.7+2.6 6.3+1.6 6.3+1.6 6.3+1.6
NoPoolLoss 100.0+0.0 100.0+0.0 100.0+o0.0 0.0+0.0 0.0+0.0 0.0+0.0
Proposed

MinCutPool  75.1+3s8.6 T4.7+38.6 75.5+38.6 100.0+0.0 100.0+0.0 100.0+o0.0

to extract the time series features. By using the default parameters, we obtain a total of 165 features
consisting of temporal, statistical, and spectral properties of the time series. To process the static graphs,
we consider a standard graph autoencoder (GAE) and a variational graph autoencoder (VGAE) (Kipf
& Welling, 2016), which are trained to perform link reconstruction. After training, we take the latent
representations generated by the encoder of the GAE and VGAE, and we cluster them using a standard
K-means algorithm. As an additional baseline, we consider a GNN followed by a graph pooling layer,
implemented as MinCutPool (Bianchi et al., 2020a), which outputs a soft assignment matrix S. This latter
method is named StaticPool and is trained end-to-end by minimizing the MinCutPool losses. The loss
coefficients and softmax temperature used in StaticPool are all fixed at 1. In all these baselines (GAE,
VGAE, and StaticPool), the GNN encoder is implemented according to equation 11 and, thus, is similar to
the one in our proposed STGNN architecture.

For the proposed STGNN model, we report the results obtained using the auxiliary pooling losses of MinCut-
Pool. Also, we report results for a configuration trained only with the forecasting loss named “NoPoolLoss”.
The results with the other pooling operators are deferred to Appendix C.2. For both the baselines and the
proposed STGNN model, the number of clusters K was set equal to the number of node classes.
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Figure 3: Quantile plot for a snippet of the time series of each cluster for the Balanced-U dataset. The
median is given as a solid line, and the corresponding latent factor from the model is given as a dashed line.
The shaded areas correspond to 25% and 75% quantiles.
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Figure 4: Plot of linear regression for mean NMI as a function of mean validation MAE for the Balanced-U
dataset (the x-axis is inverted).

Numerical results displaying the cluster-class correspondence in terms of NMI, HS, and CS are displayed in
Table 1. For each configuration, we report the averages and standard deviations of 5 independent runs. For
the balanced datasets, the proposed model with MinCutPool outperforms the other methods in all metrics
for both datasets, which shows that the STGNN manages to capture both temporal and spatial information
in the data when forming the partition. Additionally, while the NoPoolLoss variant performs reasonably
well on average, it fails to leverage the graph information effectively and shows greater inconsistencies in the
clustering partitions obtained across the different runs. In the dataset where the class information is only
contained in the time series, MinCutPool resulted in more inconsistency than NoPoolLoss. On the other
hand, with only graph information, the model with MinCutPool excels, while the NoPoolLoss model fails.
It should be noted, however, that in the OnlyGraph dataset, the time series do not contain features that
can be leveraged to guide the model selection via the forecasting loss and, thus, the optimal hyperparameter
configuration is essentially chosen at random. A more detailed discussion about this point is provided
in Appendix C.2.

The performance difference between the proposed model and the methods processing the graphs with static,
extracted features can be explained by the main differences in their optimization. GAE, VGAE, and Stat-
icPool are optimized with loss functions that primarily focus on the structural properties of the graph,
specifically link reconstruction and graph cut regularization. At the same time, these methods rely on dis-
tinctive node attributes to produce meaningful latent representations and subsequent clusters. So, when
both the graph and the series have a balanced set of distinctive features, they perform very well. However,
compared to the proposed approach, they struggle when there is less information either in the spatial or the
temporal domain. See Appendix C.2 for additional details and further experiments on this setting.

The latent factors produced by the model with MinCutPool for a segment of the series are displayed in Fig. 3,
together with the quantile plots of the time series in the corresponding clusters. As we can see, the latent
factors closely match the cluster medians, and we argue that they can be considered as valid representatives
of the clusters.

Unsupervised model selection As discussed in Section 3.3, we rely solely on the unsupervised forecasting
loss for model selection. Fig. 4 plots the NMI against the MAE for the configurations considered during
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Table 2: Performance on subsampled CER dataset for the different adjacency construction methods.

Method 2 clusters 5 clusters
NMI HS CS HS

Identity 8.1+2.9 8.543.0 T7.7+2.8 29.3+3.1

Fully Connected  8.3+2.3 8.7+2.4 7.942.3 28.2+49.7

NoPoolLoss Random 8.4+2.1 8.842.2 8.0+2.0 21.1+11.2
Euclidean 7.2+1.3 7.6+1.3 6.9+1.2 32.444.2

Pearson 4.9+3.1 5.243.3 4.7+3.0 27 1+5.7

Correntropy 5.8+2.0 6.1+2.1 5.5+1.9 29.4+4.6

Identity 6.9+2.3 7.3+2.5 6.5+2.2 15.1+9.8

Fully Connected  0.3+0.5 0.24+03  64.T+434 6.3+10.2

. Random 2.2+2.6 2.3+2.7 2.1+25 0.2+0.2
MinCutPool o i jean 26.8+00  28.0+00  25.7+00 | 58.6+1.4
Pearson 45.3+2.1 44.5+1.6 46.1+2.5 50.3+1.1

Correntropy 225411 23.4+1.2 21.7+1.1 58.7+0.8

the hyperparameter sweep of the pooling coefficients. It is possible to note that configurations that yield a
low prediction MAE generally also achieve a high NMI, which supports our hypothesis that the forecasting
performance and the quality of the clustering partition are closely related in our proposed architecture.
Moreover, this correlation holds even when other losses different from those of MinCutPool are used. We
underline that relying on the MAE to perform model selection is a noteworthy result, given the well-known
difficulties in tuning the hyperparameters of a clustering model in the absence of supervision.

6.2 Qualitative cluster analysis on real-world time series data

The main goal of this experiment is to study the quality of the partitions generated by the proposed spatio-
temporal clustering approach when applied to a purely temporal dataset, i.e., where a graph encoding the
relationships among the time series is not given. In particular, we consider the real-world time series dataset
presented in Section 5.2 and we manually construct an adjacency matrix before applying the given framework.

We consider different methods to construct the adjacency matrix. First, as described in Section 5.2, we
build a k-nn graph by looking at the similarities between the time series. As the similarities, we consider the
Euclidean distance, Pearson correlation, and correntropy (Liu et al., 2007) across the different time series.
In addition, we perform an ablation study by considering three adjacency matrices that do not account for
the temporal information: an identity matrix, a fully connected matrix, and the adjacency matrix of an
Erdos-Rényi graph. These latter configurations represent baselines with non-informative graph structures to
explore whether more informative spatial features are beneficial for time series clustering. In each setting,
we consider the NoPoolLoss and MinCutPool variants of the proposed framework. Notably, NoPoolLoss,
configured with the identity matrix as adjacency, represents a purely temporal deep learning framework
optimized solely with a forecasting loss.

We also consider two different settings by letting the number of clusters be either equal (K = 2) or greater
(K = 5) than the number of classes. The latter setting allows for a deeper qualitative assessment of the
latent factors as the clusters are smaller, more compact, and show more diversity. Therefore, in the 5-cluster
setting, our quantitative comparisons focus exclusively on the homogeneity score, which measures the class
purity within each cluster.

The results comparing the clustering performance relative to the “residential” and “SME” classes are reported
in Table 2. In the 2-cluster setting, utilizing an uninformative graph that disregards the relationships among
time series results in notably low performance. Notably, if no pooling losses are applied, the clustering
performance does not improve even when more informative graphs are utilized. On the other hand, when
the MinCutPool losses are minimized during training, the performance is noticeably enhanced when using
an informative graph that describes the relationship between time series. The most significant improvement
is observed when the graph is built using the Pearson similarity across the time series. When adding the
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Figure 5: Quantile plot for a portion of the CER test set for the case with 5 clusters obtained with the
proposed model applied with the correntropy k-nn graph. The cluster median is given as a solid line, 25%
and 75% quantiles are given as shaded areas, and the corresponding latent factor is given as a dashed line.
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Figure 6: Class distribution within the same clusters as in Fig. 5. For each cluster, the line plot shows the
median for each class with “residential” represented as a dashed blue line and “SME” as a solid orange line.
The bar plot to the right of each line plot shows the class distribution with R: “residential” and S: “SME".

pooling losses to the configurations with uninformative graphs, the performance did, however, not improve
but rather decreased. Furthermore, in some of the runs with the model utilizing the fully connected graph,
we observed a collapse into a single cluster, which resulted in a high average and standard deviation in CS.

In the 5-cluster scenario, with some exceptions, the different configurations improve in terms of HS. This
improvement is expected since a finer partition allows for splitting larger clusters that combine samples
from different classes. However, the extent of performance enhancement in terms of HS varies significantly.
When the proposed STGNN is configured with MinCutPool, the configurations utilizing Euclidean and
correntropy-based graphs exhibit the greatest improvement, with correntropy achieving the highest mean
HS value overall. The NoPoolLoss variant also achieves better overall performance when using more clusters
and, notably, outperforms the model with the MinCutPool losses when using the uninformative graphs.
This latter result is not surprising because if the graph structure is completely unrelated to the actual time
series, optimizing the clustering objective of the MinCutPool losses has an adversarial effect. To further
qualitatively analyze the clustering results, in Fig. 5 we compare the latent factors identified by the model
using the correntropy-based graph to the quantiles of the time series assigned to each cluster. As we can see,
the latent factors closely match the median of the time series distribution within each group, meaning that
they can effectively be used as representatives of the different clusters. In Fig. 6 we show the class medians
and the class distribution within each cluster. All clusters exhibit a relatively high degree of class purity
(i.e., a high HS), as they mostly contain time series from the same class. This also means that the latent
factors closely match the energy consumption profiles for the most frequent class in each cluster. We also
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Figure 7: Linear regression plot for CER (the x-axis is inverted) with (a): 2 clusters and (b): 5 clusters.

note that in clusters like the fifth one, there is a notable resemblance between the median profiles of the two
classes.

It is also worth noting that the difference in magnitude between the time series significantly affects the
clustering results. This is a direct consequence of how we normalized the data, i.e., we standardized each
time series with the global mean and standard deviation computed across the whole dataset. To put more
emphasis on the shape rather than on the magnitude, one should normalize each time series by its own mean
and standard deviation.

Unsupervised model selection As in the synthetic dataset experiment, in Fig. 7 we display the relation-
ship between NMI/HS and the validation MAE in the settings where the graph is built using the time series
similarities (Euclidean, Pearson, and Correntropy). For comparison, we also include the setting where the
graph is represented by the identity matrix, which corresponds to a configuration where no graph information
is given. Also in this case, there is a pronounced correlation between the two metrics, which empirically
supports our hypothesis of leveraging MAE for doing model selection in the absence of supervision.

The low dispersion of the points around the linear fit indicates that there is a strong relationship between
NMI/HS and MAE, no matter how the graph is constructed. However, the numerical values achieved by
the different graph construction methods cannot be compared directly. For example, the configuration that
achieves the lowest mean MAE does not necessarily imply the best NMI, as evidenced by the comparison
between Euclidean and Pearson in Fig. 7a.

6.3 Ablation studies

The experiments on the synthetic data and CER have shown the effect of different design choices, including
testing different loss functions and coefficient values, utilizing different adjacency construction methods,
and training with only the forecasting loss. In this section, we report further ablation experiments aimed
at studying different designs of the sequence encoder and different types of scheduling for the softmax
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Table 3: Ablation results based on hyperparameter search over the loss coefficients. For each configuration,
the first three columns contain the NMI, HS, and val MAE obtained by selecting the model setup with the
lowest val MAE (based on mean values from 3 runs). The next two columns give the highest observed NMI
and HS values in the search. The last two columns present correlation metrics between NMI and val MAE,
where 7,: Pearson correlation coefficient and r,: Spearman’s rank correlation coefficient.

Config Obtained from search Best NMI and HS NMI-MAE corr.
NMI HS MAE NMI HS Tp Ts
AB1 85.2+2.1 86.2+1.9 0.757+0.001 88.2+1.2 88.7+1.1 -0.959 -0.968
AB2 95.1+0.2 95.4+0.1 0.685+0.001 95.4+0.1 95.1+0.2 -0.922 -0.886
AB3 51.0+3.8 52.7+3.9 0.731+0.005 57.0+28.1 57.2+31.2 -0.583 -0.570
AB4 75.247.3 77.6+6.8 0.698+0.011 75.2+7.3 77.6+6.8 -0.743 -0.638
Proposed 95502  95.8x02  0.682x0.000 | 95.5:+0.2 95.8+02 | -0.915 -0.863

temperature. The results are limited to the Balanced-NU dataset, which is the more complex of the two
balanced datasets. The tested configurations are as follows:

e ABI1: A configuration where the TCN in the encoder is removed and a basic mean aggregator is
used to reduce the temporal dimension before message passing.

o AB2: A configuration that uses a mean aggregator after TCN instead of an attention-based aggre-
gator.

e AB3 and AB4: Configurations with static softmax temperature during training, fixed at 1.0 and
0.01, respectively.

The results of each ablation configuration are presented in Table 3. The performance of AB1 and AB2
shows that utilizing a deep learning based sequence encoder is beneficial to the clustering, but in this case,
there is no significant difference between using a TCN with mean or attention-based aggregation. AB4 and
AB5 show the benefit of the temperature scheduling in the softmax used to produce the cluster assignments
and subsequently perform pooling. In particular, fixing the temperature at 1 results in significantly worse
cluster-class correspondence and a worse NMI-MAE correlation.

6.4 Additional experiments

Here, we report additional experiments whose goal is to further investigate the importance and impact of the
chosen sequence encoder, MP layers, and temporal decoder by replacing them with different components. In
particular, we consider the following variants:

o RNN-STGNNEncoder: In this variant, the TCN is replaced with a GRU RNN (Cho et al., 2014)
with the same hidden size and number of layers, where the contraction of the temporal dimension is
accomplished by using only the last state of the RNN. While we have already established that using
a deep learning based sequence encoding improves the performance, it is important to check if using
RNNs can improve both forecasting and clustering performance. Indeed, RNNs can outperform
TCNs in some cases and learn more impactful latent embeddings.

e GAT-STGNNEncoder: This variant replaces the GCS layers in the encoder with GAT lay-
ers (Velickovié et al., 2018). The purpose of testing this configuration is to ascertain to what extent
adopting a more sophisticated attention-based MP approach influences the clustering outcome.

o EncDecSkip: In this variant, we add a skip connection that bypasses the bottleneck between the
encoder and decoder. Specifically, in addition to being passed to the pooling operator, the embed-
dings from the MP layers are passed to a different MLP that reintroduces the temporal dimension.
The output of this second decoder is added to the output of the lift operator to form the final
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Table 4: Label with additional experimental results with same layout as Table 3.

Config Obtained from search Best NMI and HS NMI-MAE corr.
NMI HS MAE NMI HS Tp Ts
RNN-STGNNEncoder 95.7+0.1 96.0+0.1 0.683+0.000 95.7+0.1 96.0+0.1 -0.979 -0.993
GAT-STGNNEncoder 95.1+0.1 95.5+0.1 0.683+0.000 95.3+0.1 95.6+0.1 -0.940 -0.974
EncDecSkip 72.5+0.5 72.9+0.5 0.563+0.001 73.3+0.8 73.7+0.8 -0.838 -0.759
EmbeddingDecoder 14.6+0.9 15.2+0.9 0.715+0.004 86.9+10.8 87.2+10.7 | -0.303 -0.272
Proposed 95.5+0.2 95.8+0.2 0.682+0.000 ‘ 95.5+0.2 95.8+0.2 ‘ -0.915 -0.863

prediction. This variant investigates the role and the importance of the bottleneck by incorporating
a computational path that bypasses it entirely.

e EmbeddingDecoder: This is a variant that retains the bottleneck without any bypass option, but
increases the capacity of the components processing the pooled representations in the decoder.
Specifically, the number of temporal channels in the latent factors is increased from 1 to 8, and,
after the lift operation, a learned embedding with dimensions N x 8 is used to weight the different
channels and produce a final prediction for each node. The rationale behind this architecture is to test
whether having different predictions for each time series (obtained by using local node embeddings)
would improve or degrade clustering performance.

The experimental setup is otherwise the same as with the additional ablations, and the results are reported
in Table 4. Starting with the variant using an RNN sequence encoder (RNN-STGNNEncoder), we see
comparable clustering performance and an improvement in the correlation metrics. This latter improvement
indicates a more monotonic relationship between NMI and MAE, and a possible higher guarantee that basing
model selection on MAE performance will result in higher cluster quality. However, as we already mentioned,
the resulting cluster-class correspondence is not significantly improved, and the RNN-based model requires
a 35% longer training time on the same machine with an RTX 4090 GPU. So, for this particular dataset, we
argue that the TCN-based model is preferable. Replacing GCS with GAT (GAT-STGNNEncoder) does not
significantly change the clustering performance, although the correlation between NMI and MAE becomes
stronger, while keeping the computational complexity comparable with GCS.

Regarding EncDecSkip, introducing a skip connection to bypass the bottleneck resulted in improved forecast-
ing performance, which is expected. However, the clustering performance is degraded, and the NMI-MAE
correlation is weaker. On the other hand, for EmbeddingDecoder, the added capacity via more channels
and additional local embeddings did not enhance the forecasting performance. In addition to the lack of
improved predictive performance, this variant produced a significant detrimental effect on the NMI-MAE
correlation, resulting in a model selection that yields poor clustering performance. In particular, selecting
the model with the lowest MAE also resulted in much lower NMI and HS than the highest observed in
the search, further showing that the model selection process becomes unreliable. In both of the latter two
variants, a plausible reason for the weakened correlation is that the clustering and forecasting objectives
become less aligned when the architecture becomes more suitable for forecasting.

7 Conclusions

In this work, we have introduced a framework for clustering multivariate time series using spatio-temporal
graph neural networks (STGNNs). Our findings highlight the importance of considering not only the tempo-
ral features of the individual time series but also the spatial axis describing the relationships across the time
series to find meaningful clustering partitions. By employing an encoder-decoder architecture with interme-
diate and interpretable latent factors, the proposed framework adjusts to the underlying data structures and
manages to form meaningful clusters in different scenarios.

Through experimentation with both synthetic and real-world datasets, we have validated the robustness and
flexibility of our model. A series of quantitative and qualitative analyses underscores the model’s capability to
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leverage structural and temporal data, thereby forming informative clusters that show a good correspondence
with the class labels.

The optimization of the loss coeflicients is a vital component in learning a meaningful clustering partition. In
particular, several of the existing pooling losses promote a balanced partition, and adjusting the weights of
the different components of the loss can lead to the formation of clusters with a non-uniform size. However,
finding the optimal hyperparameter configurations without relying on supervised cross-validation is a well-
known challenge. To address this issue, we showed that the self-supervised forecasting loss function can act
as an efficient tool for the quality of the clustering partition. This important connection allows us to perform
model selection in a completely unsupervised setting.

Clustering spatio-temporal data using STGNNs remains a largely unexplored area, and our study represents
an important initial step toward systematically addressing this gap. Through extensive quantitative and
qualitative analyses, we have demonstrated the feasibility and potential of STGNN-based clustering. To
continue the research in this direction, there is an urgent need for standardized benchmarking frameworks and
comprehensive datasets to evaluate better and compare emerging methodologies and STGNN architectures.
While further research and additional real-world datasets are essential, we believe our proposed evaluation
framework and the introduced synthetic dataset provide a solid foundation, facilitating future advancements
and inspiring continued exploration in this promising research direction.
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A Additional background material

Table 5 summarizes the components of the pooling losses considered in this work. The implementation of
DMoN in Pytorch Geometric! also uses the orthogonality loss of MinCutPool, but we consider only the
modularity and collapse regularization losses that are proposed in the original paper. We refer the interested
readers to the reference papers for a more in-depth explanation about the different pooling losses.

Table 5: Pooling loss components.

Method Topology-oriented loss Quality-oriented loss

. . Tr(STAS) ‘ STSs Ic
MinCutPool (Bianchi et al., 2020a) —— —_——— - —

Tr(STDS) I1STSl- VC F
DiffPool (Ying et al., 2018) ||A — softmax(S)softmax(S) " ||F % 27]:]:1 H(S,)S
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TVGNN (Hansen & Bianchi, 2023) 35 Z”k Aij1Sik — Sjkl k NE=D

B Dataset details

In this section, additional details about the applied datasets are given.

(a) MostlyGraph (b) MostlySeries

Figure 8: Visual representation of the graphs of MostlyGraph and MostlySeries. The colors/shapes corre-
spond to the different underlying classes. Node positions were generated using the Fruchterman-Reingold
force-directed algorithm.

B.1 Synthetic data

In addition to the four synthetic datasets presented in Section 6.1, two more variants were constructed:
MostlyGraph and MostlySeries. As the names suggest, these two datasets incorporate more class-related
information into either the series or the graph compared to the two balanced datasets (Balanced-U and
Balanced-NU). The graphs of MostlySeries and MostlyGraph are depicted in Fig. 8.

The parameters utilized to generate the six datasets are presented in Table 6. Each dataset comprises 1500
nodes and 2000 time steps. In the table, Cqyistr represents the class distribution, m and mg denote the BA
parameters, ©, a, ¢, p, and o are the series parameters presented in Egs. 16 and 17. For the OnlyGraph
dataset, @ contains the AR parameters of the shared AR(2) model employed to generate the series. For

Thttps://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.dense.DMoNPooling.html
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OnlySeries, the parameter prob denotes the probability of a connection between two nodes in the Erdés-
Rényi graph, and connected = True indicates that after all initial edges are sampled, additional edges are

randomly added until the graph is connected.

Table 6: Parameters for the synthetic datasets

Balanced-U
Clistr: Uniform
m:[2,1,4,1,2]

mo : [3,2,5,2,4]
°=(5 5)

a:[4,.5,.6,.4,.5]

¢ :[.00,.15, —.15, —.20, .20]
p:[12,14,10,16,12]
oc=.6

Balanced-NU
[4,.2,.1,.15,.15]

Rest the same as Balanced-U

Caistr :

MostlyGraph

Cyistr: Uniform
m:[2,2,2,3,1]
mo : [3,3,3,3,1]
©®: Same as Balanced-U
a:[.5,.5,.5,.5,.5]
¢:[.2,.2,.2,.2,.2]
p:[12,12,12,12,12]
o=.6

MostlySeries OnlyGraph OnlySeries
Clistr: Uniform
m:[1,1,1,1,1]

mo : [2,2,2,2,2]

Clistr: Uniform
prob = .005

connected = True

Clistr: Uniform
m:[2,2,2,2,2]
mo : [3,3,3,3,3]

0= <§ ;) 6 =(.5,.3) ©: Same as MostlySeries
a:[8,.8,.8,.8,.8 N/A a:[1.2,1.5,.8,2.0,1.4]
é:1.0,.15, —.15, —.20, .20] N/A ¢ :[.0,.15,—.15, —.20, .20]
p: [12, 14, 8, 16, 20] N/A p:[12,14,8,16,20]
oc=.6 o=.6 oc=.4

B.2 Real world load data

The sub-sampled and filtered CER dataset consists of 1541 nodes, where 1056 are “residential” and 485 are
“SME”. The time series of each node consists of 12865 values after the hourly resample. The constructed
graphs using Euclidean distance, Pearson correlation, correntropy, and Erdds-Rényi are displayed in Fig. 9.

(a) Euclidean (b) Pearson (c¢) Correntropy (d) Random

Figure 9: Visual representation of the graphs computed for the CER dataset when using four different
adjacency construction methods. The colors/shapes correspond to the different underlying classes: blue
round nodes denote “residential” and squared orange nodes the “SME” classes, respectively. Node positions
were generated using the Fruchterman-Reingold force-directed algorithm.

C Experimental details and additional results

This section presents the model and training parameters used in the experiments and some additional results.
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Table 7: Pooling loss coefficients for the model with MinCutPool obtained from hyperparameter searches.
c1: topology oriented, cy: regularization oriented.

Synthetic CER
Dataset 5 clusters Adjacency 2 clusters 5 clusters
C1 Cc2 C1 Cc2 C1 Cc2
Balanced-U 0.10 0.10 | Identity 1.06 0.10 2.02 0.10
Balanced-NU 1.06 0.10 | Full 2.50 0.58 1.06 2.50
MostlySeries  0.10 0.10 | Random 0.10 0.10 0.10 1.54
MostlyGraph  0.58 0.10 | Euclidean 2.02 0.10 1.06 0.10
OnlySeries 0.10 0.10 | Pearson 2.50 0.10 0.58 0.10
OnlyGraph 1.54 0.58 | Correntropy 2.50 0.10 2.50 0.58

C.1 Model and training parameters

Model configuration In each layer of the model, the hidden size H is fixed at 16. The MLP components of
the conditional block comprise a single hidden layer and an output layer, both with the same size H and ReLU
activation functions. The bias term is omitted from the output layer of the MLP processing the covariates.
The TCN used as the temporal encoder consists of two temporal layers, with the dilation of the second layer
set to 2. The ReLU function is used as the activation in each layer of the TCN. The hidden and output
sizes are set to H, and the kernel size of the temporal convolution is set to 3. The TCN is also configured
with a skip connection between the temporal layers. Finally, the temporal dimension is aggregated using a
linear attention layer. The GNN encoder comprises two message-passing layers, implemented as described
in Eq. 4, with hidden and output sizes H. The temporal decoder is an MLP with a single hidden layer of
size H and an output size Ty = 1.

Training procedure In all experiments and configurations, the model was trained for 250 epochs with
Adam using a multi-step learning rate scheduler reducing the learning rate by a factor of 0.5 every 50
epochs, with the initial learning rate set to 0.001. The optimizer was also configured with weight decay
regularization (L2 penalty) set to 0.0001.

The softmax temperature used when computing the cluster assignment matrix was initially set to 1.0 and
then decreased linearly by 0.0099 per epoch down to a minimum of 0.01.

Gradient clipping was applied during backpropagation with a clip value of 5.

Hyperparameter search In all experiments, a grid search was conducted to find suitable values for the
pooling loss coefficients where ¢1,co € {0.1,0.58,1.06,1.54,2.02,2.5} (six linearly spaced points between 0.1
and 2.5). The resulting coefficients from the searches are reported in Table 7

C.2 Synthetic experiment

For the synthetic datasets, the proposed model was trained with a batch size of 16. The model was not given
covariates, so the CondBlock of Eq. 9 was comprised of a single MLP layer with an output size of 16 and
ReLU activation.

The obtained numeric results for MostlyGraph and MostlySeries are presented in Table 8. The results are
aligned with those presented in Section 6.1 for the other dataset configurations, where the proposed model
better handles the combination of spatial and temporal features, even compared to the methods applied to
the graph with extracted features, as they rely more heavily on the presence of relevant features in both the
graph structure and node attributes to produce meaningful clusters.

The results obtained for the different pooling losses are reported in Table 9. With the exception of Diff-
Pool, the different losses produce similar results. TVGNN differs significantly from the top performers for
OnlyGraph. However, for this dataset, the time series do, by intent, not contain any distinctive features to
help guide the clustering. All distinctive features are in the graph, and therefore, the correlation between
forecasting performance and cluster-class correspondence does not hold, as can be seen in Fig. 10. The model
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Table 8: Additional synthetic data experiment results.

Method Dataset
MostlySeries MostlyGraph
NMI HS CS NMI HS CS
SC 16.9+0.0 13.6+0.0 22.440.0 81.5+0.0  80.5+0.0  82.6+0.0
Spatial Walktrap 34.6+0.0 65.1+0.0 23.6+0.0 74.6+00  90.9+00  63.2+0.0
Leiden 32.240.0 52.3+0.0 23.2+0.0 90.8+00 99.5+0.0 83.5+0.0
Euclidean 100.0+0.0 100.0+0.0 100.0+o0.0 | 43.5+0.0 42.5+0.0 44.7+o.0
T 1 Cosine 100.0+0.0 100.0+0.0 100.0+o0.0 | 49.1+0.1 49.0+0.1 49.2+40.1
empora DTW 74.240.0 71.4+0.0 77.240.0 23.7+0.1 22.640.1 25.1+0.1
ESN 99.8+0.2 99.8+0.2 99.8+0.2 6.2+1.4 5.8+1.3 6.8+1.5
GAE 95.2+0.9 95.2+0.9 95.240.9 39.8+3.8 34.8+3.8 46.6+4.2
Static feats VGAE 92.3+1.4 92.2+1.4 92.3+1.4 47.043.8 44.7T+54  49.8+25
StaticPool 84.6+4.7 84.3+5.0 85.0+4.4 39.7+2.2 39.6+2.1 39.8+2.3
Proposed NoPoolLoss 100.0+0.0 100.0+0.0 100.0+o0.0 | 46.4+2.8 45.5+2.7  47.5+2.9
p MinCutPool 100.0+0.0 100.0+0.0 100.040.0 | 86.8+6.7 86.846.7 86.9+6.7
Table 9: Synthetic data results for different pooling methods.
Method Dataset
Balanced-U Balanced-NU OnlySeries
NMI HS CS NMI HS CS NMI HS CS
NoPoolLoss 74.2+37.1 73.9+37.0 94.6+2.9 83.6+1.3 85.0+15 82.2+1.2 100.0+0.0 100.0+0.0 100.0+0.0
DiffPool 64.0+32.2  59.8+30.7 69.2434.4 58.64+29.2 55.7+28.0 61.7+30.9 97.3+54  96.64+6.9 98.1+338
MinCutPool 100.0+0.0 100.0+0.0 100.0+0.0 95.5+02  95.840.2  95.3+0.2 75.1+38.6 74.7+38.6 75.5+38.6
DMoN 96.5+6.8 96.5+6.8  96.5+6.8 86.7+1.4 88.3+1.4 85.1+1.5 100.0+0.0 100.0+0.0 100.0+0.0
TVGNN 93.3+8.2  93.3+s2 93.3+s.2 99.91+01 99.9101 99.1+0.1 100.0+0.0 100.0+0.0 100.0+0.0
OnlyGraph MostlySeries MostlyGraph
NMI HS CS NMI HS CS NMI HS CS
NoPoolLoss  0.0+0.0 0.0+0.0 0.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 46.4+2.8  45.5+2.7  47.5+2.9
DiffPool 0.4+0.1 0.4+0.1 0.4+0.1 93.24+5.7 89.7+84 97.4+35 17.0+3.8 16.8+3.8 17.2+3.8
MinCutPool 100.0+0.0 100.0+0.0 100.0+0.0 | 100.0+0.0 100.0+0.0 100.0+0.0 86.8+6.7 86.8+6.7  86.9+6.7
DMoN 100.0+0.0 100.0+0.0 100.0+0.0 | 100.0+0.0 100.0+0.0 100.0+0.0 93.9+10.8 93.9+108 93.9+10.8
TVGNN 1.3+03 1.3+0.3 1.3+0.3 100.0+0.0 100.0+0.0 100.0+0.0 98.5+24 98.5+24 98.5+23
DiffPool MinCutPool DMoN TVGNN
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Figure 10: NMI-MAE correlation for OnlyGraph.

selection based on forecasting MAE is thus ineffective, as expected. It is also noteworthy that the different
losses exhibit significantly different behaviors within the selected search space for the loss coefficients, with
DMOoN consistently delivering less erratic outcomes than the other two graph-cut related pooling losses, and

DiffPool consistently underperforms.
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C.3 Real world data experiment

There are a few differences in the training setup and model configuration used in the real-world data exper-
iment. Firstly, a set of exogenous variables, U;..y1, based on sinusoidal functions with daily, weekly, and
yearly periods was utilized to help the model better capture the seasonal patterns in the data. Secondly, the
batch size was set to 8.

Lastly, in the lift operation of the model, the softmax with temperature is replaced with a hardmax using
the straight-through trick. More specifically, during forward propagation, the hardmax is applied while the
softmax with temperature is applied during backpropagation. This change was made due to the presence of
multiple outliers, which produced a low validation MAE when a near-hard cluster assignment matrix, which
had also collapsed into a single cluster, was combined with high-magnitude latent factors corresponding to
the near-zero assignment values. This phenomenon is illustrated in Fig. 11.
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Figure 11: The effect of not using the straight-through trick on CER with Pearson adjacency. (a): NMI-MAE
correlation plot, (b): Latent factor of each cluster for the rightmost outlier in (a), (¢): Soft assignments for
the first 100 nodes for the same outlier.
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